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License to Run: Exercise Impacts Functional
Plasticity in the Intact and Injured Central
Nervous System by Using Neurotrophins

Shoshanna Vaynman and Fernando Gomez-Pinilla

Exercise has been found to impact molecular systems
important for maintaining neural function and plastic-
ity. A characteristic finding for the effects of exercise in
the brain and spinal cord has been the up-regulation of
brain-derived neurotrophic factor (BDNF). This review
focuses on the ability of exercise to impact brain circuitry
by promoting neuronal repair and enhance learning
and memory by increasing neurotrophic support. A par-
agon for the role of activity-dependent neurotrophins in
the CNS is the capacity of BDNF to facilitate synaptic
function and neuronal excitability. The authors discuss
the effects of exercise in the intact and injured brain and
spinal cord injury and the implementation of exercise
preinjury and postinjury. As the CNS displays a capacity
for plasticity throughout one’s lifespan, exercise may be
a powerful lifestyle implementation that could be used to
augment synaptic plasticity, promote behavioral
rehabilitation, and counteract the deleterious effects of
aging.
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T
he benefits of exercise on brain health have
been recognized for centuries. As early as 4
B.C. to A.D. 65, Seneca, Roman philosopher

and dramatist, prescribed exercise in his writings
as a means to obtain a healthy mind and body.1 Yet
it has only been in the past 2 decades that scientific

inquiry has stringently substantiated the effect of
exercise on CNS health. Both clinical2-4 and ani-
mal5-7 studies have repeatedly demonstrated that
exercise benefits neuronal function. Exercise
improves learning and memory,3-5 counteracts the
mental decline that comes with age,2,8 and facili-
tates functional recovery after brain and spinal
cord injury (SCI), disease,9-11 and depression.12,13

The brain and spinal cord display plasticity, a
capacity that enables these systems to achieve new
functions by modifying the constitutive elements
of their internal milieu and/or connectivity in
response to environmental constraints.14 Both the
brain and the spinal cord have a regenerative
potential that constitutes part of the plastic poten-
tial of the young, adult, and senescent animal.15 A
major focus of research has been the attempt to
delineate the potential therapeutic capacity of
exercise in CNS injury. In fact, the major setback
limiting the rehabilitative implementation of exer-
cise can be poised in the following question: What
are the molecular mechanisms and signaling path-
ways through which exercise promotes synaptic
plasticity, functional recovery, and learning and
memory? It is mainly through the use of animal
studies that the underlying mechanisms subserv-
ing the ability of exercise to augment synaptic and
cognitive plasticity and promote neuronal repair
are beginning to be discerned.

The effects of exercise on the brain go beyond
simply increasing regional blood supply,16,17 nor
are they restricted to motor-sensory regions of the
brain expectant to be conjoined with a motor task.
Exercise can activate specific neural circuits to
modify the way that information is transmitted
across cells at the synapse, possibly by impacting
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the action of specialized molecules. Characteristi-
cally, animal studies have found that exercise ele-
vates the levels of neurotrophic factors in select
regions of the adult brain and spinal cord.
Neurotrophic factors have been categorically
described as factors that regulate the proliferation
and differentiation of cells in the developing
CNS.18 Among the trophic factors elevated by exer-
cise are insulin-like growth factor (IGF),19

fibroblast growth factor 2 (FGF-2),20,21 and brain-
derived neurotrophic factor (BDNF).22 Although
other trophic factors have their roles in promoting
neuronal plasticity, an increase in BDNF and asso-
ciated plasticity molecules has been the thematic
epithet for the effects of exercise in the brain, espe-
cially in the hippocampus, an area vital for sup-
porting learning and memory processes.23,24

BDNF MEDIATES THE EFFECTS
OF EXERCISE ON THE BRAIN

It must be emphasized that BDNF, unlike other
neurotrophins, seems to be especially susceptible
to regulation by activity, for both its expression
and release.25,26 This activity dependence provides
a means for behavioral implementations such as
exercise to easily modulate BDNF levels in the CNS.
Experiments using cultured hippocampal neurons,
in which the mRNAs for the precursor proteins
pro-BDNF and pro–nerve growth factor (pro-NGF)
were overexpressed, demonstrated that activity
applied here in the form of depolarization was
responsible for triggering the release of BDNF,
whereas NGF secretion remained constitutive.27

Like NGF, the expression of other neurotrophins,
NT-3 and NT-4, does not seem to be as susceptible
to regulation by activity.28 In fact, this lack of activ-
ity dependence has enabled NT-3 to be used as a
control to study the effects of exercise on synaptic
plasticity.29-31 The activity dependence of BDNF was
especially found to be prominent in hippocampal
neurons. The secretion of neurotrophins can be
either regulated or constitutive. In constitutive
secretion, neurotrophins are spontaneously
released shortly after being synthesized, thereby
enabling the neurotrophin to be continuously
available to cells that need it. In contrast, in the
regulated pathway, once synthesized, neuro-
trophins are stored in secretory granules and
released in response to extracellular cues.32 Inser-
tion of BDNF into the hippocampus by using a
vaccina virus expression system showed that
BDNF is sorted into the regulated pathway,

whereas other neurotrophins are mainly sorted
into the constitutive pathway.27,32 Although other
neurotrophic factors, such as NGF23 and FGF-2,20

have been found to be induced in the hippocam-
pus by exercise, their up-regulation was curtailed
and less robust than that of BDNF. In conclusion,
the activity dependence of BDNF may enable it to
be particularly capable of mediating the benefits of
exercise on neuronal and cognitive plasticity.

Exercise-induced increase of BDNF in the hip-
pocampus may be archetypal for the benefits of
physical activity on overall CNS health. In addition
to the hippocampus, exercise induces the expres-
sion of BDNF mRNA and protein in the cerebral
cortex, cerebellum, and the spinal cord.23,33-35 As
neuronal plasticity serves as the foundation for
learning and the basis of recovery of function,
neurotrophic factors such as BDNF, which are
intrinsically involved in mediating synaptic plastic-
ity and learning and memory mechanisms, may be
especially requisite in the reorganization and
regeneration of injured circuits. Exercise provides
a natural and noninvasive paradigm to activate this
plastic potential of the injured CNS by employing
BDNF and similar trophic support factors.

EXERCISE BENEFITS COGNITIVE
ABILITIES THROUGH BDNF

Learning and memory have been used as an
effective paradigm to understand how the nervous
system undergoes plasticity, that is, alters compo-
nents of its neuronal circuitry to effectuate changes
in synaptic transmission and functional outcome,
in response to behaviors such as exercise. In intact
animals, exercise has repeatedly been shown to
improve cognitive function, in particular, to facili-
tate the acquisition of hippocampal-dependent
learning tasks.29,31,36,37

The role of neurotrophic factors, especially BDNF,
in mediating the effects of exercise on the brain
has been explored in regard to their ability to aug-
ment cognitive function. It was first determined
that animals who learned the fastest and had the
best recall also had the highest levels of BDNF in
their hippocampi,17 suggesting that hippocampal
BDNF levels seem to be related to learning effi-
ciency. Recent studies indicate that the exercise-
induced enhancement in learning and memory is
dependent on the increase in hippocampal BDNF
levels.31 Antibodies (TrkBIgG) that quench the
action of endogenous BDNF in the hippocampus
during exercise training were used in those stud-
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ies. Blocking the action of BDNF during exercise
was found to be sufficient to abolish the exercise-
induced enhancement of both learning and mem-
ory on the Morris water maze task, a hippocampal-
dependent task of spatial memory.31 Additionally,
there seems to be a strong quantitative relationship
between BDNF and learning and memory.17

Studies evaluating the importance of BDNF to
cognition indicate that exercise may activate the
neural circuitry necessary for the nervous system
to undergo learning and memory. Reminiscent of
the BDNF increases produced by physical activity,
actual learning and memory tasks,38 and long-term
potentiation (LTP), the electrophysiological corre-
late believed to underlie learning and memory39,40

selectively increases BDNF mRNA levels in the hip-
pocampus. Studies have reported that BDNF
mRNA levels are increased in the hippocampi of
rats that have undergone 3 or 6 days of Morris
water maze training.16 Similarly, studies using
alternative hippocampal-dependent learning para-
digms such as contextual fear conditioning have
found increases in BDNF mRNA levels in the hip-
pocampus.41 The demarcation that BDNF holds
among its neurotrophic factors to regulation by
activity may similarly be occupied in regard to
memory processes. BDNF, but not NGF or NT-3,
seems to play a role in consolidating short-term
memories into long-term memories.42

The ability of exercise to induce BDNF takes on
an even greater significance when presented with
studies that illustrate that BDNF may be constitu-
tive for proper cognitive function. For example,
depleting the hippocampus of BDNF, by using
transgenic animals quenching endogenous BDNF
with function-blocking anti-BDNF antibodies, has
been demonstrated to impair spatial learning and
memory in rats on both the water maze and an
inhibitory avoidance task43-45 and reduce LTP.44,46

Exogenously reinstating BDNF into the depleted
hippocampus seems to ameliorate these deficits.
Exogenous BDNF application46 or transfection of
hippo- campal slices with a BDNF-expressing
adenovirus47 has been shown to restore the ability
to induce LTP. Clinical studies support the impor-
tance of BDNF in learning and memory in
humans.48,49 A study conducted by Egan and col-
leagues found that individuals expressing a spe-
cific polymorphism in the BDNF gene exhibit
learning impairments.48 The possibility of using
chronic delivery of BDNF in human patients for
nervous system repair is problematic, in that it is
unable to cross the blood-brain barrier50 and
directly infusing it into the brain would be too

invasive. Therefore, using exercise as a physiologi-
cal means to increase BDNF levels makes it a
suitable candidate to be instated as a component of
neurorehabilitative therapy.

EXERCISE ACTIVATES SIGNAL
TRANSDUCTION MECHANISMS

The ability of physical activity to activate ele-
ments of neuronal gene expression is fundamental
to the proficiency of exercise in inducing long-last-
ing and/or permanent changes in the morphology
and function of the nervous system. Exercise
impacts downstream effectors of BDNF action on
gene expression by increasing the transcriptional
regulator cAMP response element binding protein
(CREB).30 CREB activation rapidly actuates de
novo transcription and translation of inducible
transcription factors, such as cFos and Jun, whose
transient expression leads to the more persistent
expression of their target genes. It is the expres-
sion of these target genes that results in changes in
structural proteins, enzymes, ion channels, and
neurotransmitters that eventuate changes in the
structure and function of neuronal circuitry.51 The
functional outcome of CREB induction has been
applied to the field of learning and memory. CREB
has been found to be an evolutionarily conserved
molecule requisite for the formation of long-term
memory (LTM).52-54 CREB has been described as a
molecular switch for the activation of transcription
necessary for LTM.54 Disrupting CREB function
with a dominant negative CREB protein impairs
odor memory in Drosophila55 and an LTM defi-
ciency in mice.53

CREB seems to be an important link in the
BDNF-mediated machinery responsible for
advancing the effects of exercise on learning and
memory. Blocking BDNF action during exercise
was sufficient to abrogate the exercise-induced
enhancement in learning and memory and prevent
exercise-induced increase in CREB mRNA levels
and the active form of CREB (p-CREB).31 With exer-
cise, BDNF and CREB mRNA levels were signifi-
cantly and positively associated with each other as
well as with performance on the probe trial, illus-
trating that animals with the highest BDNF expres-
sion also had the highest CREB expression and the
best memory recall. Moreover, the effect of exer-
cise may be potentiated through CREB as it may
provide a self-perpetuating loop for BDNF action
during exercise, in that it regulates BDNF tran-
scription56 and in turn is regulated by BDNF.57,58
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EXERCISE USES BDNF TO
FACILITATE THE SYNAPSE

Exercise may benefit brain function by facilitat-
ing transmission of nerve impulses at the synapse.
The most chronicled synaptic protein found to be
regulated by exercise under the action of BDNF is
synapsin I.17,30,31 Synapsin I tethers synaptic vesi-
cles to the actin cytoskeleton,59 thus providing for
a substantial and localized vesicular pool of vesi-
cles remote from the active zone that serves as a
reserve pool and proper neurotransmitter release;
inhibiting synapsin I reduces both the synaptic
vesicle reserve pool and neurotransmitter
release.60 The presence of an adequate vesicular
pool becomes apparent during high-frequency
stimulation, as without it vesicular rundown
occurs.61 The ability of BDNF to regulate synaptic
release proteins such as synapsin I may explain
why BDNF gene deletion in mice results in a
reduction in synaptic proteins, sparsely docked
vesicles, and impaired neurotransmitter release.62

In fact, blocking the action of BDNF produces syn-
aptic fatigue and decreases synapsin I levels.62 An
adequate vesicular release pool and adequate and
sustainable transmitter release provided by func-
tional levels of synapsin I may afford the level of
synaptic communication necessary for learning. A
recent clinical study conducted on familial epilep-
tics showed that a genetic mutation in the synapsin I
gene may be associated with learning difficulties.63

The action of exercise on presynaptic mem-
brane molecules such as synapsin I may contribute
to the observation that physical activity induces
perforated synapses, which characteristically have
multiple dendritic contacts.64,65 Synapsin I also reg-
ulates neurite development,66,67 the formation and
maintenance of the presynaptic structure,68 axonal
elongation,69 and new synaptic formation.70 Synap-
ses with multiple dendritic contacts may not only
contribute to the efficacy of synaptic transmission
but may also represent newly formed conduits for
communication.

EXERCISE, NEUROTROPHINS,
AND THE INJURED BRAIN

Similar to the developing nervous system,
which is structurally and functionally dynamic, the
injured CNS is undergoing processes of reorgani-
zation and regeneration that may make it espe-
cially responsive to being primed by external cues
such as physical activity. Exercise may potentiate

the intrinsic plasticity of the injured brain by
increasing expression of trophic support systems.

Animal studies have determined that exercise
may be therapeutic in the management of CNS
injury, by reducing the degree of initiatory dam-
age, limiting the amount of secondary neuronal
death, and supporting neural repair and behavioral
rehabilitation. These above-mentioned effects of
exercise have been accredited in part to neuro-
trophic factors, such as BDNF. BDNF gene deletion
in mice increases the incidence of apoptosis,45

whereas the addition of BDNF in cultured rat
hippocampal neurons protects neurons against
excitotoxicity.71 Studies have shown that the pow-
erful role of BDNF in promoting neuronal survival
in the developing nervous system72 seems to
extend to injuries suffered by the adult brain. For
instance, BDNF is associated with improving cog-
nitive function and ameliorating neurological defi-
cits caused by ischemia.73-77

EXERCISE BEFORE OR
AFTER BRAIN INJURY

A pressing concern in need of being answered
about the implementation of exercise as a rehabili-
tative intervention is what time period should
physical activity be applied to produce its
ameliorative effects on structural and functional
CNS damage. In animal studies, performing exer-
cise prior to brain trauma has been found to pro-
duce prophylactic effects on attendant brain dam-
age, such as limiting the infarct size following
forebrain ischemia.78,79 Moreover, preinjury exer-
cise has been shown to have transoperative bene-
fits in animal models of stroke and Parkinson dis-
ease.78,80 Obviously a preinjury exercise regimen
for humans may not be the most effective treat-
ment because the time of injury cannot be pre-
dicted. However, exercise therapy may be benefi-
cial for certain patient populations such as those
who have sustained a transient ischemic attack and
therefore have a high disposition to experience a
secondary insult.81

The implementation of exercise during the
postinjury phase requires paying attention to spe-
cific protocols to be beneficial. In slow-degenera-
tion, nonsevere models of Parkinson disease, the
application of exercise during the incipient phase
of neuronal degeneration is neuroprotective, func-
tioning to attenuate neurochemical deficits and
provide a measure of behavioral recovery.82 These
effects of exercise have been reproduced in
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human subjects. Physical therapy is effective in
increasing motor ability when implemented extant
to the diagnosis of Parkinson disease.83-86 In con-
tradiction to these findings, animal studies explor-
ing the use of exercise immediately following trau-
matic brain injury (TBI) found that exercise can
exaggerate the extent of ischemic or TBI.87,88

The above-mentioned diametric findings bring
up the question of when postinjury physical activ-
ity should be implemented to be beneficial. Post-
TBI, an energy crisis prevailing among surviving
cells may make them more vulnerable to second-
ary activation.89-91 Studies suggest that postinjury,
there is less cellular ATP availability89,90,92 as an
immediate source of energy for cellular processes.
As exercise has been shown to increase the energy
demand in various parts of the brain such as the
hippocampus, motor cortex, and striatum,93 it is
possible that implementing physical activity during
this energetically compromised time may further
accelerate cellular dysfunction. In a TBI animal
model, premature exercise blocked the activity-
dependent BDNF up-regulation and even impaired
the recovery of cognitive function.94 Moreover, the
immediate implementation of exercise following
TBI precluded the normal up-regulation of plastic-
ity molecules regulated by BDNF action, such as
CREB and synapsin I seen with exercise.94,95 How-
ever, when exercise is delayed 14 days postinjury, it
increases BDNF and enhances cognitive function.95

In conclusion, exercise provides a therapeutic
tool for TBI by managing its time of applica-
tion.10,96,97 Especially because the traumatically
injured brain has not been responsive to exoge-
nously administered BDNF,98 it seems that exer-
cise, by activating the intrinsic milieu for the action
of trophic support, may be more propitious at
bequeathing the beneficial effects of BDNF on
restoring brain function. This understanding tem-
pered with the knowledge that the injured brain is
metabolically distressed should accede that there
exists a critical time window post–CNS injury in
which the application of exercise may be thera-
peutically implemented.

EXERCISE, NEUROTROPHINS,
AND THE INJURED SPINAL CORD

It is time to realize that the spinal cord, like the
brain, is capable of using experience to modify its
existing circuitry to affect behavior, in effect exhib-
iting the essentials of what we call learning.
Although our conception of the spinal cord has

substantially matured beyond the Galenic view of
the spinal cord as a mantled bundle of nerves con-
necting the brain to the body,99 it is in need of
reorganization.

The ability of exercise to enhance SCI recovery
may be extensively due to its adeptness at enhanc-
ing sensory function,100,101 which seems to be
mediated by molecular systems dependent on
neurotrophic action.102 Voluntary wheel running
and forced treadmill exercise elevate the expres-
sion of BDNF and molecules important for synap-
tic function and neurite outgrowth in the spinal
cord and innervated skeletal muscle.34

The results of several studies in which BDNF
has been added to the neural milieu support the
possibility that these factors promote survival and
growth of brain and spinal cord neurons affected
by several types of insults.103,104 It has been shown
that BDNF administration after midthoracic com-
plete spinal cord transection improves the func-
tional recovery of hind limb stepping and that
these changes appear to be associated with
neuronal sprouting at the injury site.105,106

BDNF and NT-3 mRNA levels have been found
to be increased in the lumbar region of the spinal
cord and in the soleus muscle, whose innervating
motorneurons are located in the lumbar region.
The findings that 1) the soleus muscle contained
significant increase in BDNF mRNA levels without
concurrent increases in protein and 2) the spinal
cord protein levels far exceeded the small
increases in spinal BDNF mRNA levels have lead to
the suggestion that neuromuscular activity might
increase retrograde transport of BDNF from the
muscle.33 It is likely that peripheral sources of
neurotrophins are transported retrogradely from
the muscle via motorneuron axons to serve as
trophic sources for neurons in the spinal cord and
dorsal root ganglia.33 Using spinal cord isolation to
eliminate supraspinal and peripheral mono-
synaptic input to the lumbar regions of the spinal
cord while retaining motorneuron-muscle connec-
tivity decreased the levels of BDNF and NT-3 mRNA
and protein levels in the isolated regions.107 Paralyz-
ing the soleus muscle with intramuscular botulin
toxin type A injection, thereby reducing activity of
this normally animated muscle, decreased BDNF
and synapsin I expression but increased NT-3 in
the lumbar spinal cord.107 Although classic tread-
mill training has been shown to increase the pro-
duction of BDNF and NT-3 in the spinal cord and
skeletal muscle,34 this paradigm showed that there
is a differential effect of activity provided by exer-
cise on these 2 neurotrophins.
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DO ALL FORMS OF
EXERCISE LEAD TO THE
SAME DESTINATION?

Functional recovery seems to be highly task
specific. Possibly the most lucid representation of
this in action can be found in the study performed
by Nudo and colleagues.108 Squirrel monkeys who
had undergone unilateral microlesions to the hand
representation area of the cortex showed
behaviorally dependent changes in the damaged
hemisphere. Spontaneous recovery consisted of
the animal relying on the unimpaired limb and
resulted in a decrease of the hand representation
area.109 When the animals were forced to use the
impaired limb in a set of training tasks by restrain-
ing the unimpaired limb, they showed a sparing of
the hand representation area of the cortex.108

Forced limb motor activity also adheres to the laws
of postinjury CNS vulnerability. When animals
were forced to rely on the unimpaired forelimb
immediately following the cortical injury for 14
days, neuroanatomical and functional losses were
exacerbated.110

A study conducted using 3 different exercise
paradigms, treadmill training, swim training, and
stand training, found that treadmill exercise was
the most propitious among the 3 for improving
sensory recovery after spinal cord contusion in
rats.102 Thus, it seems that rehabilitative strategies
that simulate walking are distinctively effective at
reclaiming locomotion. The beneficial effects of
exercise paradigms, such as running or walking,
on SCI may be attributed to the phasic sensory
input produced by repetitive foot contact with the
ground to result in the induction of activity-
dependent events such as increased neurotrophin
levels in selective circuitry. As for the case of the
brain, BDNF is a prized candidate for use in spinal
cord therapies. BDNF localizes to synaptic vesicles
in the dorsal horn111 and modulates sensory input
within the spinal cord.112,113 BDNF acts to confer
tactile sensitivity to the spinal cord by transducing
tactile stimuli from slow-adapting mechanoreceptors
innervating Merkel cells within touch dome com-
plexes of the skin to the spinal cord.114 This may
explain why repetitive loading of the hind limb
provided during running but not standing or swim-
ming exercise paradigms produces increases in
BDNF levels.102 In fact, the recent findings from
Hutchinson and colleagues102 suggest that the best
predictor of tactile sensory recovery after SCI seems
to be spinal and peripheral expression of BDNF.

THE SPINAL CORD CAN
ALSO BENEFIT FROM LEARNING AND
MEMORY MECHANISMS

Recent experiments have found that the up-
regulation of BDNF by exercise in the spinal cord
may activate the select machinery employed by
BDNF to promote synaptic plasticity in brain
regions central to learning and memory. Hemi-
sectioned rats conditioned by 28 days of exercise,
initiated 1 week postinjury, showed significant
increase in BDNF levels in the lumbar region of the
hemicord ipsilateral to the lesion. Moreover, exer-
cise also augmented the consummate end prod-
ucts of BDNF action on synaptic transmission and
gene transcription, that is, synapsin I and CREB.115

Like BDNF, these factors have been found to be
fundamental to promoting synaptic plasticity
underlying learning and memory.53,54,64 These find-
ings advocate for the existence of spinal cord
learning mechanisms that may be harnessed to
promote neuronal repair and functional recovery.
In conclusion, the use of exercise training may
activate mechanisms of motor skill learning in
patients with a moderate to profound loss of
ascending and descending spinal pathways by
using activity-dependent plasticity to increase
rehabilitative gains.

Particularly, our understanding of spinal cord
competence has been broadened by the finding of
a spinal central pattern generator (CPG) consti-
tuted from interconnected spinal neurons. The
CPG is stimulated by supraspinal tracts that
descend from the locomotor regions in the
brainstem and the thalamus, but it relies on
proprioceptive and cutaneous inputs from the
periphery to continually adjust its activity.116 Stud-
ies conducted in cats have found that when
supraspinal control is removed, by transecting the
thoracic spinal cord, the CPG in the lumbosacral
spinal cord is still capable of producing well-
planned and coordinated treadmill locomotion.117

Studies in humans confirm animal studies, show-
ing the presence of the CPG in the lubrosacral spi-
nal cord.118,119 Advantageously, the existence of a
CPG allows for the possibility that exercise training
can be used to guide the performance of the CPG
and result in restoring some aspects of locomotion.
A robust body of data indicates that repetitive loco-
motor activity can improve functional recovery fol-
lowing different types of injuries to the spinal cord
in humans and animals.120-125
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RUNNING OUT OF TIME:
EXERCISE, NEUROTROPHINS,
AND AGING

The aging brain is beset by ever-accumulating
challenges to the neuronal milieu such as those
generated by oxidative damage and metabolic
changes.126,127 It is believed that these processes
contribute to the cellular and molecular abnormal-
ities that impose the dysfunction and eventual
death of neuronal populations in age-related
neurodegenerative diseases. Among these, oxida-
tive stress and lack of trophic support may engen-
der the pathology of various neurodegenerative
diseases. Aging is also accompanied by decreased
BDNF signaling in the brain. Studies conducted in
monkeys have shown that BDNF levels are
decreased during aging, especially in hippocampal
pyramidal and dentate granule cells.128 Conspicu-
ously, age-related decreases in hippocampal
BDNF levels consort with age-related impairments
in learning and memory in rats.129

Reigning supreme among the neurodegener-
ative diseases afflicting the aging brain are Alzhei-
mer disease (AD), Parkinson disease (PD), and
stroke. The preclusion of normal BDNF expression
is a repeated characteristic in many disorders of
cognitive function that occur later in life, such
as schizophrenia,48 PD,130 dementia,131 and AD.132

For example, AD brains exhibit region-specific
decreases of BDNF in the hippocampus,133,134

which are also accompanied by decreases in the
expression of BDNF’s cognate TrkB receptor.135

Regular exercise retards the accumulation of
cell damage and physiological dysfunction charac-
teristic of the aging process,136,137 especially attenu-
ating the oxidative stress and consort cognitive
decline in the brain. Rats that exercised regularly
during a 9-week period exhibited improved per-
formance on a learning and memory task accom-
panied by reduced brain levels of membrane lipid
peroxidation and oxidative damage to DNA.36 This
result is especially prominent in older rats.138

The ability of exercise to improve cognitive
function, especially in age-compromised neural
integrity, may lie in its ability to interface metabolic
process altering oxidative stress by-products with
BDNF pathways. BDNF may be part of a system
that enhances neuronal plasticity and the resis-
tance to oxidative and metabolic insults. The abil-
ity of BDNF to promote the survival of various cell
types throughout the CNS and PNS has been recur-
rently reported in both the in vitro and in vivo liter-
ature.103,139-141 Particularly, BDNF can protect CNS

neurons from oxidative stress142,143 such that BDNF
addition impacts mitochondrial activity.144 Other
neurotrophins such as NT-3 and NGF have been
shown to have antioxidant effects.143,145 However,
the benefits gained from NGF induction may be
limited given that there are few types of neurons in
the CNS that can maintain their survival in
response to NGF.146,147 In contrast, the cognate
TrkB receptor to BDNF is expressed abundantly
throughout the CNS,148 especially the hippocam-
pus, which exhibits a bountiful constitution of
both BDNF and the TrkB receptor.149,150 Consider-
ing the evidence that other neurotrophins are less
susceptible to regulation by activity and those that
are, such as NGF, show transient and less robust
responses to activity than BDNF suggests that
BDNF may be the predominant neurotrophin
employed by exercise to perpetuate its effects on
the synaptic and cognitive plasticity of an animal
experienced over time.

LIFESTYLE CHOICES: A LACK
OF EXERCISE, A LACK OF BDNF

The issue of aging has particular relevance to
our present-day society. Our l i festyle of
consummatory overindulgence and sedentary
adherence has created an authentic version of
“Logan’s Run,” a society that precludes us from
successful aging and where the only way out is to
start “running.” The current trend to supersize
meals and minimize exercise has grown into an
obesity epidemic. The number of obese individu-
als has been increasing in the past 40-year period.
Between the 1960–1962 and the 1988–1994 period,
the amount of U.S. adults fit into class I obesity
(BMI, 30–34.9 kg/m2) increased to 66% (2.2%
increase per year).151 This rate seems to only be
increasing, as reported between 1991 and 1998,
the proportion of U.S. adults with a BMI > 30 kg/m2

rose 49% (7% increase per year).152 Unfortunately,
the younger generation is not immune. The num-
ber of overweight children and adolescents has
likewise increased between the 1960–1962 and the
1988–1994 periods.151 Alarmingly, there was a
greater than 70% increase in the proportion of
obese individuals in the 18- to 29-year-old age
range between 1991 and 1998.152 The estimated
280,000 to 325,000 deaths accounted for by obesity
in 1991 is escalating.153 Moreover, obesity is a
comorbidity factor for the most prevalent of dis-
eases in our society, such as coronary heart disease
and diabetes.154,155 Coronary heart disease accounts
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for the vast majority of deaths in the United States
in the 20th century,156 whereas diabetes has been
estimated to kill 193,000 Americans per year.157 A
sobering wakeup call should be the fact that the
increase in child obesity seems to coincide with
the increase in type II diabetes in youngsters, a dis-
ease that has historically been relegated to the
adult and aging population.158 Between 1982 and
1994, there was an estimated 10-fold increase in
type II diabetes in adolescents, whereas in 1994
alone, 33% of all newly diagnosed cases occurred
in patients 10 to 19 years of age.159

Besides an improper diet, the lack of exercise
seems to be a leading culprit in sustaining this epi-
demic.96 Accordingly, physical inactivity seems to
be the primary causal factor responsible for about
one third of deaths due to coronary heart disease,
colon cancer, and type II diabetes.160 If these statis-
tics are not sobering enough, it should be reiter-
ated that the effects of physical inactivity go
beyond affecting the body, but also are a cost to
the preservation of our cognitive faculties during
our aging process.

The damage imposed by diseases of metabolic
function characteristic of today’s American society
may be especially conspicuous in the brain. As
BDNF is intimately connected with energy metab-
olism, these metabolic disorders can affect BDNF
levels in the brain. Molecular systems related to
energy metabolism seem to interface with BDNF-
mediated synaptic plasticity mechanisms subserv-
ing cognition.161 Thus, the connection between
cognitive function and metabolism may be inti-
mately related, suggesting that behaviors such as
eating and physical activity, which modulate our
energy metabolism, may affect our ability to learn.
In fact, the mitochondrial powerhouse of the cell
driving the cellular energy production also
encodes 11 human mental retardation genes.162

Hypoglycemia and intermittent fasting both
increase BDNF levels, whereas hyperphagia and
high oxidative stress levels decrease BDNF lev-
els.163-165 In studies conducted with BDNF knock-
out mice, BDNF has been shown to be important
for controlling glucose and insulin levels and body
weight,166 such that low levels of BDNF produce
hyperglycemia and obesity.167 Mice with reduced
BDNF levels are obese.168 Peripheral BDNF admin-
istration can reduce body weight and normalize
glucose levels in diabetic rodents.169 Likewise,
BDNF administration into the brain has been
shown to reduce body weight and increase insulin
sensitivity.170,171 Importantly, the role that BDNF
holds in both metabolism and synaptic plasticity of

the CNS especially as related to learning and mem-
ory processes underlines the importance of
implementing lifestyle changes such as exercise.
Given the ability of exercise to augment BDNF lev-
els, it is possible that exercise may be an effective
lifestyle implementation to abate if not combat the
effects of stress-related lifestyle choices. In partic-
ular, it has been found that exercise can counteract
the decrease in hippocampal BDNF levels due to
the consumption of a high-fat diet.29 It should be
emphasized that other complementary lifestyle
changes such as dietary restriction172 and cognitive
stimulation173 can also be implemented to
counteract the stress-induced decrease in BDNF
expression and contribute to successful aging.

THERAPEUTIC CHALLENGES:
COMBINING EXERCISE WITH
OTHER INTERVENTIONS

The future of using exercise as an intervention
for the treatment of CNS trauma may be combined
with other protocols such as stem cells and phar-
macological manipulations. In addition to increas-
ing the regenerative processes, a prominent goal
in spinal cord repair has been to neutralize the
inhibitory CNS environment. Identified inhibitory
molecules are NogoA, Mag, tenascin-R, and
veriscan. The inhibitory action of NogoA has been
found to be suppressed by the IN-1 antibody.174

Since then, it has been demonstrated that the IN-1
antibody has cooperative effects when applied
with NT-3 or BDNF. Rats receiving the combina-
tion treatment had a larger number of axons regen-
erated for a great distance than those in rats who
received either treatment alone.175 Thus, in the
human patient, it is possible that the future may
combine physical training with pharmacological
interventions that down-regulate the inhibitory
cues of the CNS to optimize functional recovery
from brain and spinal cord trauma.

Exercise may be combined with stem cell grafts
to treat neurological disorders and SCI. Olfactory
ensheathing cells and embryonic stem cells have
been successfully used to promote the recovery of
the spinal tract in rats.176,177 Using the endogenous
ability of exercise to promote factors such as
BDNF, which have trophic, survival, and growth-
stimulating properties, may help cell grafts survive
and integrate into existing circuitry. In fact, the
incorporation of motor training has been found to
enhance the survival and function of grafts of
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transplanted tissue in stroke and Parkinsonian
models.178,179

CONCLUSIONS

It is becoming recognized that exercise has the
capacity to promote synaptic and functional plas-
ticity in the brain and spinal cord. In the intact
brain, exercise can enhance synaptic and cognitive
plasticity by using the aptitude of neurotrophic
factors such as BDNF. In the injured CNS, exercise
can facilitate functional recovery by harnessing the
intrinsic capacity of the intact nervous system that
uses BDNF-dependent synaptic plasticity. Espe-
cially in the hippocampus, exercise has been
shown to effectuate synaptic plasticity and to
enhance learning through the action of BDNF.
Recent findings support the contention that the
spinal cord, like the hippocampus, uses a BDNF-
mediated mechanism to facilitate learning.
Although the underlying mechanisms responsible
for the effects of exercise on synaptic plasticity,
functional recovery, and learning and memory are
still waiting to be delineated, the current findings
promote exercise as a potential rehabilitative ther-
apy for the injured CNS. In conclusion, exercise
should be considered as an important tool capable
of improving overall neural health and cognitive
ability and particularly as a regimen that can
sustain cognitive function throughout one’s
lifetime.
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